

BEYOND EXCELLENCE -93

JANAKA RODRIGO

Where the extreme challenges excellence.

www.janakasrodrigo.com

A small cubical block of mass 8m is attached to one end A of a light elastic spring AB of natural length 3a and modulus of elasticity 6mg. The spring and the block are at rest on a smooth horizontal table with AB equal to 3a and lying perpendicularly to the face to which A is attached. A second block of equal physical dimensions, but of mass m, moving with a speed (2ga)^{1/2} in the direction parallel to BA impinges on the free end B of the spring.

Assuming that the heavier block is held fixed and that AB remains straight and horizontal in the subsequent motion, determine 1)the maximum compression of the spring

2)the time that elapses between impact and the lighter block first coming to instantaneous rest.

Assuming now that the heavier block is also free to move determine, at the instant when the blocks are first moving instantaneously with the same velocity, the values of

3)the common velocity of the blocks

4)the compression in the spring.

පුතාහස්ථතා මාපාංකය 6mg හා ස්වභාවික දිග 3a වන ලුහු පුතාස්ථ AB දුන්නක් A කෙළවර සුමට තිරස් තලයක් මත ඇති ස්කන්ධය 8m වූ සනාකාර වස්තුවකට යාකර ඇත. දුන්න A කෙළවර යාකර ඇති මුහුණට ලම්භකව තිරස්ව නිසලව ඇති විට තවත් සමාන මාන ඇති ස්කන්ධය m වූ සනකයක් තිරස්ව BA දිශාවට (2ga)^½ වේගයෙන් වලිතවී දුන්නේ B නිදහස් කෙළවරෙහි ගැටෙයි.

අනතුරුව ඇතිවන චලිතයේදී වඩා බර වස්තුව අචල නම් හා AB තිරස් නම්

1)දුන්නේ උපරිම සම්පීඩනය,

2)ගැටීමේ සිට මුල් වතාවට බර අඩු වස්තුව ක්ෂණික නිසලතාවයට

ඒමට ගතවන කාලය සොයන්න.

බර වැඩි වස්තුවටත් චලිත වීමට නිදහස ඇත්නම් වස්තූන් දෙකම එකම පුවේගයෙන් චලිත වීමේදී

3)වස්තූන්ගේ පොදු පුවේගයත්,

4)දුන්නේ සම්පීඩනයත් ලබා ගන්න.