

BEYOND EXCELLENCE -78

JANAKA RODRIGO

Where the extreme challenges excellence.

www.janakasrodrigo.com

A cross-section ABO of a fixed solid object is shown in the figure. Which has OA in vertical, OB in horizontal and AB as a part of circle of radius *a*. One end of a light inextensible string is attached to a particle P of mass m which lies on smooth curved surface AB. String passes over a fixed small smooth pulley fixed at A and carries another particle Q of mass M (> m).

Initially P is kept at B with the string taut and released from rest. If angle POB is θ . at time is t, show that $(M + m) a\dot{\theta}^2 = 2g (M\theta - mSin\theta)$

- a) If M < 3m show that reaction on the particle P is maximum at $\theta = \alpha$, Where $\cos \alpha = \frac{2M}{M+3m}$
- b) If $\frac{3m}{M} < \pi 1$ show that reaction on particle vanishes when $\theta = 0$ or $\theta = \beta$, where $\sin \beta = \frac{2M\beta}{M+3m}$

#

හරස්කඩ ABO වන අවල ඝන වස්තුවක් රූපයේ දැක්වෙයි.එහි OA සිරස්ද, OB තිරස්ද AB යනු අරය a වූ වෘත්ත කොටසක්ද වෙයි.එක් කෙළවරක් AB සුමට වනු පෘෂ්ඨය මත ඇති ස්කන්ධය m වූ P අංශුවකට යාකල ලුහු අවිතනාෳ තන්තුවක් A හිදී සවිකර ඇති කුඩා සුමට කප්පියක් මතින් ගමන් කර අනෙක් කෙළවර M (>m) ස්කන්ධය ඇති Q අංශුවකට යාකර ඇත. ආරම්භයේදී P අංශුව B හිද තන්තුව තදවද තබා නිසලතාවයෙන් වලිතයට මුදා හැරේ. C0 කාලයට පසු C1 කෝණය C2 නම

$$(M+m)$$
 a $\dot{ heta}^2$ =2g $(M heta$ - mSin $heta$) බව පෙන්වන්න.

a) M < 3m නම් $\theta = \alpha$ විට P අංශුව මත පුතිකුියාව උපරිම බව පෙන්වන්න.

මෙහි
$$Cos\alpha = \frac{2M}{M+3m}$$
 වෙයි .

b) $\frac{3m}{M} < \pi$ - 1 නම් P අංශුව මත පුතිකුියාව $\theta = 0$ හෝ $\theta = \beta$ විට අතුරුදන් වන බව පෙන්වන්න, මෙහි $Sin\beta = \frac{2M\beta}{M+3m}$ වෙයි.