

BEYOND EXCELLENCE -76

JANAKA RODRIGO

Where the extreme challenges excellence.

www.janakasrodrigo.com

1)A car takes a banked corner of a racing track at a speed V, the lateral gradient α being designed to reduce the tendancy to slide slip to zero for a lower speed U. Show that the coefficient of the friction necessary to prevent slide - slip for the greater speed V must be at least $(V^2-U^2)\sin\alpha Cos\alpha$

V2Sin2α+U2Cos2α

2)A curve on a railway line is banked up so that the lateral thrust on the inner rail due to a truck moving with speed v_1 is equal to the thrust on the outer rail when the truck is moving with speed $v_2(>v_1)$. Show that there will be no lateral on either rail when the truck is moving with speed $[\frac{1}{2}(v_1^2+v_2^2)]^{\frac{1}{2}}$

1)වංගුවකදී මාර්ගය තිරසට α කෝණයකින් ආනතව නිර්මාණය කර ඇත්තේ U පුවේගයෙන් චලිත වීමේදී පැත්තට ලිස්සා යාම ශූනා වන පරිදිය.

වඩා විශාල V පුවේගයක් ඇති විට පැත්තට ලිස්සා යාම වැළැක්වීමට ඝර්ෂණ සංගුණකය අඩුතරමින්

 $(V^2-U^2)Sin\alpha Cos\alpha$

 $V^2Sin^2\alpha+U^2Cos^2\alpha$

වීය යුතු බව පෙන්වන්න.

2) වංගුවකදී දුම්රිය මාර්ගයක් ආනත කර ඇත්තේ වේගය v_1 විට ඇතුළත පීල්ල මත තෙරපුම හා වේගය $v_2(>v_1)$ විට පිටත පීල්ල මත තෙරපුම් විශාලත්වයෙන් සමාන වන පරිදිය. දුම්රියේ වේගය

 $\left[\frac{1}{2} (V_1^2 + V_2^2) \right]^{\frac{1}{2}}$ නම් පීලි මත පාර්ශවීක තෙරපුම ශූනා වන බව පෙන්වන්න.