

BEYOND EXCELLENCE -52

JANAKA RODRIGO

Where the extreme challenges excellence.

www.janakasrodrigo.com

The engine of a car has maximum power P kW. The car has mass 1600 kg and a maximum speed of 30 ms⁻¹ on a level road. The maximum speed up a hill of inclination α , where Sin α = 1/20,is 20ms⁻¹.

Given that when the speed is $v \, \text{ms}^{-1}$ the resistance to the motion has magnitude $\lambda \, v^2 N$, where λ is a constant, show that the value of λ is 16/19 and find the value of P, giving three significant figures in your answer.

Find the maximum acceleration of the car at an instant when it is traveling on a level road at a speed of 10ms⁻¹.

කාරයකට උපරිම P kW ජවයක් ඇත. එහි ස්කන්ධය $1600~{
m kg}$ වන අතර සමතල මාර්ගයක උපරිම වේගය $30~{
m ms}^{-1}$ වෙයි. ති්රසට α කෝණයකින් ආනත මාර්ගයක කෙලින්ම ඉහළට උපරිම $20~{
m ms}^{-1}$ වේගයක් ඇත, මෙහි $Sin~{
m }\alpha=1/20$. කාරයේ වේග $v~{
m ms}^{-1}$ වන විට චලිතයට මුළු පුතිරෝධයේ විශාලත්වය $\lambda v^2 N$ වෙයි, මෙහි λ යනු

නියතයකි. $\lambda=16/19$ බව පෙන්වා,සාර්ථාංක තුනකට P හි අගය ලබාගන්න. කාරය $10 \mathrm{ms}^{-1}$ වේගයෙන් සමතල බිමක ගමන් කරන විට එහි උපරිම ත්වරණය සොයන්න.