

BEYOND EXCELLENCE -44

JANAKA RODRIGO

Where the extreme challenges excellence.

www.janakasrodrigo.com

The distance between two airports A and B is d km. A steady horizontal wind blows with the speed u kmh⁻¹ at an angle θ to the direction AB. Two airplanes X and Y take off simultaneously from A and B respectively, and describe straight horizontal courses. The speed of each airplane in still air is v kmh⁻¹

- a) Show that the airplanes X and Y can fly along the routes AB and BA respectively, if v > u and that in these flights they pass each other $\frac{1}{2} d(v^2 u^2 \sin^2 \theta)^{-\frac{1}{2}}$ hours after take-off.
- b) Find the courses the airplanes should take in order that they may meet each other in the least possible time, and show that the meeting point is at a distance ½ duv¹Sin θ km from the line AB.

A හා B ගුවන් තොටුපළ දෙකක් d kmපරතරයකින් පිහිටා ඇත. AB සමහ heta කෝණයක් සාදන දිශාවට සුළහ නියත u kmh $^{-1}$ පුවේගයෙන් හමයි.නිසල දිනක

 $v\,\mathrm{kmh^{-1}}$ වේගයක් ඇති $X,\,Y$ ගුවන් යානා

පිළිවෙලින් A,B වලින් එකවරම පිටත්ව සරල රේඛීයව චලිත වෙයි.

a)X,Y යානා පිළිවෙලින් AB, BA දිශාවන් චලිත කාලයකදී ඒවා එකිනෙක පසුකරන බව පෙන්වන්න. වෙයි නම් V>u විට පැය $rac{1}{2}$ d (V^2 - U^2 Sin^2 θ) $^{-\frac{1}{2}}$

b) අඩුතම කාලයකදී යානා හමුවීමට ගමන් කළ යුතු මාර්ග සොයා එව්ට යානා AB සිට

 $\frac{1}{2}$ $\frac{duv^{1}Sin}{duv}$ භ දුරකදී හමුවන බව පෙන්වන්න.