

BEYOND EXCELLENCE -41

JANAKA RODRIGO

Where the extreme challenges excellence.

www.janakasrodrigo.com

1) A man can swim at a speed u relative to the water in a river flowing with speed v. Prove that it will take him, $u (u^2 - v^2)^{-\frac{1}{2}}$ times as long to swim a certain distance up-stream and back as to swim the same distance and back perpendicular to the direction of the stream. What happens if v is greater than u.

2) Two particles move in concentric circles of centre O and radii a, b with uniform speeds u, v in the same sense. If P, Q be the positions of the particles at a moment when their relative velocity is along the line joining them, obtain expressions for the ratios b: a and v: u in terms of the angles of the triangle OPQ; and, if the angle POQ = θ , show that θ cos θ = θ = θ + θ

1)නියත V වේගයෙන් ගලන ගහක ජලයට සාපේක්ෂව නියත U වේගයෙන් මිනිසෙකු පිහිනයි. ඔහුට කිසියම් දුරක් ඉවුරුවලට සමාන්තරව ගහ ඉහළට හා පහළට යාමට ගතවන මුලු කාලය, එම දුරම ඉවුරුවලට ලම්බව යාමට හා ආපසු ඒමට ගතවන මුලු කාලය මෙන් U (U^2 - V^2) - $^{1/2}$

ගුණයක් බව පෙන්වන්න. V>U නම් කුමක් වෙයිද?

2)කේන්දුය O හා අරයන් a, b වෘත්ත දෙකක එකම අතට පිළිවෙලින් u, v නියත වේගයෙන් වලිත වන අංශු දෙකක් P, Q ලක්ෂණවලට පැමිණි විට ඒවායේ සාපේක්ෂ පුවේග PQ ඔස්සේ පිහිටයි නම් OPQ තිකෝණයෙ කෝණ ඇසුරින් b: a හා v: u අනුපාත ලබාගන්න.

POQ කෝණය θ නම්

 $\cos \theta = (au + bv)/(bu + av)$ බව පෙන්වන්න.