

BEYOND EXCELLENCE -12

JANAKA RODRIGO

Where the extreme challenges excellence.

It is required to project a particle from a point O to pass through a point P which is at horizontal distance \mathbf{x} and height \mathbf{y} from O. If the velocity of projection is \mathbf{V} , show that

$$V^2 \ge g [y + \sqrt{(x^2 + y^2)}].$$

P, Q are two points distance **a** apart ,and **h** ,**k** above a given horizontal plane; prove that the minimum velocity with which a particle must be projected from the plane so as to pass through P and Q is $\sqrt{[g(a+h+k)]}$.

O ලක්ෂයක සිට V පුවේගයෙන් පුක්ෂේප කරන අංශුවක් O ට \mathbf{x} තිරස් දුරින් \mathbf{y} උසින් පිහිටන \mathbf{P} ලක්ෂයක් හරහා යයි නම් $\mathbf{V}^2 \geq \mathbf{g} \left[\mathbf{y} + \sqrt{(\mathbf{x}^2 + \mathbf{y}^2)} \right]$ බව පෙන්වන්න .

තිරස් තලයකට \mathbf{h} , \mathbf{k} උසින් P, Q ලක්ෂ දෙක \mathbf{a} පරතරයෙන් පිහිටයි . P, Q ලක්ෂ දෙක හරහා යන පරිදි එම තිරස් තලය මත සිට අංශුවක් පුක්ෂේප කළ හැකි අවම පුවේගය

 $\sqrt{[g(a+h+k)]}$ බව පෙන්වන්න .