

BEYOND EXCELLENCE -11

JANAKA RODRIGO

Where the extreme challenges excellence.

www.janakasrodrigo.com

A bus starts from rest and moves along a straight road with constant acceleration ${\bf f}$ until its speed is ${\bf v}$; it then continues at constant speed ${\bf v}$. When the bus starts a car is at a distance ${\bf b}$ behind the bus and is moving in the same direction with constant speed ${\bf u}$. Find the distance of the car behind the bus at time ${\bf t}$ after the bus has started

(a) for 0 < t < v/f (b) for t > v/f

Show that the car cannot overtake the bus during the period 0 < t < v/f unless

 $u^2 > 2 f b$

Find the least distance between the car and the bus in the case when $u^2 < 2 f b$ and u < v. State briefly what will happen if

 $u^2 < 2 f b$ and u > v.

නිසලතාවයෙන් ගමන් අරඹන බස් රථයක් එහි වේගය **v** වනතෙක් නියත **f** ත්වරණයක් යොදා ඊළහට නියත **v** වේගයෙන් සරල රේඛීය මගක චලිත වෙයි.බසය පිටත්වන විටම එයට **b** දුරක් පිටුපසින් එම දිශාවටම නියත **u** වේගයෙන් කාරයක් ගමන් කරයි. බසය පිටත්වී **t** කාලයකදී කාරය බසයට කෙතරම් දුරක් පිටුපසින් වෙයිද ?

(a) 0 < t < v/f (b) t > v/ f වෙන වෙනම

සළකන්න . $u^2 > 2 f b$ නොවේ නම්

0 < t < v / f විට කාරයට බසය ඉස්සර කළ නොහැකි බව පෙන්වන්න . $u^2 < 2 f b$

හා U < V නම් කාරය හා බසය අතර අවම

පරතරය ලබාගන්න. $u^2 < 2 f b$ හා u > v

නම් කුමක් වෙයිද ?