

BEYOND EXCELLENCE -10

JANAKA RODRIGO

Where the extreme challenges excellence.

www.janakasrodrigo.com

A particle is moving in a straight line withuniform retardation , and it passes a series of equally spaced marks along the line . The speeds of the particle at the n th and n+1 th marks are ku and u respectively , where k>1. Find the speed of the particle at the n-1 th mark, and prove that its speed at the first mark is $u \sqrt{(k^2n - n + 1)}$

If the speed of the particle at nth mark is mean of its speeds at the first mark and the n -1 th mark find quadratic equation to determine k in terms of n and deduce that k = n / (4 - n). # අංශුවක් නියත මන්දනයකින් සරල රේඛාවක ගමන් කිරීමේදී සමාන පරතරයෙන් ඇති සළකුණු පසු කරයි.n වන හා n+1 වන සළකුණු වලදී වේග පිළිවෙලින් n0 හා n0 වෙයි n0 ව

 ${\bf n}$ - ${\bf 1}$ වන සළකුණේදී වේගය සොයන්න , පළමු සළකුණේදී වේගය ${\bf u} \sqrt{({\bf k}^2 {\bf n} - {\bf n} + {\bf 1})}$ බව පෙන්වන්න . ${\bf n}$ වන සළකුණේදී වේගය පළමු හා ${\bf n}$ - ${\bf 1}$ වන සළකුණුවලදී වේගයෙන්ගේ මධාානාා නම් ${\bf k}$ සෙවීමට ${\bf n}$ ඇසුරෙන් වර්ගජ සමීකරණයක් ලබාගන්න . ${\bf k}$ = ${\bf n}$ /(${\bf 4}$ - ${\bf n}$) බව අපෝහකය කරන්න .